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Abstract. This paper presents the Happy Robot team ’ s system for
RoboCup@Home 2026, built on our open-hardware platform, Happy
Edu, which lowers the entry barrier for new teams through a modu-
lar and extensible design. The robot integrates multimodal perception
for speech interaction, object understanding, and human-aware recog-
nition. We further introduce key research contributions: a cost-effective
3D LiDAR-based re-identifiable human-following system, a foundation-
model-driven planning framework for shelf management, a robot hand
capable of four primitive motions for Bento assembly, and a Fluorescent
AR Marker—based method for automatic 6 DoF pose annotation and es-
timation. In addition, we are working on fine-tuning robot foundation
models toward RoboCup tasks. These developments advance practical
domestic service robotics.

1 Introduction

The Happy Robot team has participated in the RoboCup@Home league of the
RoboCup Japan Open since 2012 and has competed in the RoboCup World
Competition since 2015. Our results include 9th place in 2015, 8th in 2016, 9th
in 2017, and 5th in 2018. Participation in the world competition was suspended
from 2020 to 2022 due to the COVID-19 pandemic. In 2023, we took part in
the @Home Education Workshop and Challenge at RoboCup 2023 Bordeaux
and obtained 2nd place. In 2024, we participated in the @Home Playground at
RoboCup 2024 Eindhoven and achieved another 2nd place. These events serve as
an educational bridge between RoboCup Junior and RoboCup@Home, providing
undergraduate students with meaningful research experience and contributing
to the continuous development of the @Home league.

In addition, our team has been actively engaged in the World Robot Sum-
mit (WRS) Future Convenience Store Challenge (FCSC), a competition eval-
uating advanced robotic technologies for realistic convenience-store operations.



The challenge focuses primarily on shelf-stocking and disposal tasks, requiring
accurate item recognition, dependable grasping, and precise placement or re-
moval of expired products. In 2024, our team, Happy Robot, earned first place
in the FCSC, a competition that featured leading RoboCup@Home teams such
as Hibikino-Musashi and Er@sers. This accomplishment highlights our capability
to integrate perception, manipulation, and task planning into a highly reliable
system. Our robot consistently demonstrated robust recognition and manipu-
lation performance across diverse products, satisfying the stringent operational
standards expected in the competition.

The Happy Robot team is jointly organized by the Demura Laboratory in
the Department of Robotics and the Yumekobo Projects at the Kanazawa In-
stitute of Technology (KIT). Yumekobo, known as the “factory for dreams and
ideas,” is a distinctive educational initiative established in 1993 to foster cre-
ativity, hands-on engineering skills, and character development among students.
A central activity of Yumekobo is the support of project-based student teams—
known as Yumekobo Projects—that aim to cultivate technical proficiency, col-
laboration, and leadership.

The mission of the Happy Robot team is to develop robots that bring happi-
ness and comfort to people. Our robot, shown in Fig. 1, is intentionally designed
with the appearance of a small child and features a bright yellow color scheme to
emphasize friendliness and emotional approachability. We believe that domestic
service robots should embody designs that are welcoming to both older adults
and children. Since 2015, our team has pioneered this design philosophy within
the RoboCup@Home league.

The remainder of this paper is organized as follows. Section 2 details the
hardware architecture of our robotic platform. Section 3 describes the software
architecture. Section 4 presents our research contributions. Section 5 concludes
the paper with a discussion of applications and outlines future directions.

2 Open Hardware

Since 2015, our robots have pioneered a distinctive design concept within the
RoboCup@Home league, adopting a friendly, approachable, and childlike appear-
ance intended to promote familiarity and emotional acceptance among children,
women, and elderly individuals in domestic environments. Building on this design
philosophy, we began developing Happy Edu in 2023—a new small, lightweight,
and cost-effective open hardware robot, shown in Fig.1, designed to reduce entry
barriers for new teams in the @Home league.

In the RoboCup Japan Open, the Education League, introduced in 2015 as
an entry-level league for the @HomeLeague, was renamed the Bridge Compe-
tition in 2025 to further support the development of the @Home ecosystem.
However, the number of new entrant teams has remained limited. A major con-
tributing factor is the dependence on the TurtleBot2 (Kobuki), a previously af-
fordable platform that is no longer in production, making it increasingly difficult
to obtain. Consequently, suitable robot platforms for beginner teams have be-
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Fig. 1. Happy Edu
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come scarce. To address this issue, we developed Happy Edu, an open-hardware
robot based on the Kachaka platform, as a practical and accessible successor to
TurtleBot2-based systems.

Happy Edu consists of the Kachaka mobile base and three primary modules:
the torso, arm, and head. Technical details are provided in the Annex. To equip
the robot with the functions required for competition, we fabricated mounting
fixtures for components such as cameras and robotic arms using an FDM 3D
printer. These fixtures are clamped to the carbon-pipe torso using four screws,
resulting in a lightweight, modular structure that facilitates rapid on-site assem-
bly and maintenance.

The original Kachaka docking base offered mounting holes only at its ends,
limiting hardware expandability. To overcome this constraint, we designed a resin
plate with embedded nuts, enabling flexible placement of devices including the
onboard PC, robotic arm, and sensor modules.

All expansion components are provided as open-source CAD data and can
be manufactured using a 3D printer or outsourced fabrication services [1]. The
CAD data can be freely modified—for example, to add custom mounting holes
—allowing new @Home teams to rapidly build or adapt their robots while sig-
nificantly reducing development time.

3 Software

3.1 Speech Recognition and Speech Synthesis

For speech recognition, we use Whisper, a Transformer-based ASR model de-
veloped by OpenAl. Trained on large-scale multilingual datasets, Whisper offers
high robustness to noise, speaker variation, and reverberation, making it suit-
able for domestic service-robot environments in RoboCup@Home. Its accurate



timestamp alignment and reliable command transcription improve downstream
task execution.

For speech synthesis, we employ Mimic3, an open-source T'TS engine based on
the VITS architecture. VITS integrates a variational autoencoder, normalizing
flows, and adversarial learning in an end-to-end framework, enabling natural-
sounding waveform generation without intermediate spectrograms. Mimic3 pro-
vides clear prosody, high intelligibility, and low-latency inference, allowing smooth
and responsive human-robot interaction on embedded hardware.

Together, Whisper and Mimic3 form a robust speech interface that supports
reliable command understanding and expressive verbal responses in real-world
home environments.

3.2 Recognition

For natural language understanding, we employ RoBERTa, an enhanced vari-
ant of BERT fine-tuned for sentiment and intention analysis, enabling reliable
interpretation of user utterances. For visual scene understanding, a Generative
Image-to-Text Transformer combines a CLIP encoder with a Transformer de-
coder to produce semantic captions, supporting contextual reasoning and scene
explanation.

For human-aware perception, MTCNN is used for face detection, followed by
DeepFace for estimating emotion, age, and gender, which supports personalized
and socially appropriate interaction. For object perception, GroundingDINO
provides open-vocabulary detection based on natural-language prompts, allowing
recognition of unseen objects without additional training.

These four models collectively form a complementary perception pipeline
for the RoboCup@Home league: RoBERTa interprets speech intent, the Image-
to-Text model supplies semantic scene descriptions, MTCNN /DeepFace handle
human-centered recognition, and GroundingDINO enables flexible object detec-
tion. Together, they support tasks such as locating requested objects, under-
standing user context, and generating appropriate robot responses in domestic
environments.

4 Research Contribution

4.1 Re-identifiable Human-following System Using 3D LiDAR

We have been developing a re-identifiable human-following system using 3D
LiDAR. The system consists of two main components: human detection and
re-identification. For detection, we employ PointPillars, whose performance is
enhanced by training with a custom dataset to mitigate domain gaps. For re-
identification, we use ReID3D, which distinguishes individuals based on physical
attributes such as height and clothing, as well as gait features, enabling robust
re-identification even after occlusions.

In our implementation, we use the Livox Mid-360, a cost-effective 3D Li-
DAR sensor. Because RelD3D was originally trained on datasets captured with
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Fig. 2. Data arugumentation for fine-tuning PointPillars

Table 1. Performance comparison of pedestrian AP [%)]

Method Metric Pedestrian AP
PointPillars 3D-BBox 47.9446

BEV 54.3456
Proposed  3D-BBox 46.5419
BEV 62.4932

Velodyne LiDAR, a noticeable domain gap arises when applying it directly to
Livox data. To address this, we perform fine-tuning of ReID3D using Livox-based
data. Specifically, as shown in Fig. 2, we generated augmented training samples
by adding human point clouds to diversify the data distribution. As a result, and
as summarized in Table 1, this data augmentation strategy enabled us to obtain
significantly improved AP scores, although these results are still preliminary as
the system remains under development.

This study represents a significant contribution to the @Home league, where
traditional systems have relied primarily on 2D LiDAR. By enabling robust
human following with 3D LiDAR, and by demonstrating that high-level person
re-identification can be achieved using an affordable sensor, our approach lowers
the hardware barrier and advances the reliability of human-robot interaction in
real domestic environments.

4.2 Foundation-Model-Based Planning System for Shelf Display
and Disposal

This study proposes an automated planning system for robotic shelf display
and disposal tasks in convenience stores to address labor shortages and the
limitations of rule-based approaches in dynamic retail environments. The system
combines perception modules, foundation-model-based reasoning, and a closed-
loop execution architecture to achieve adaptive and reliable task performance
(Fig. 3) [3].

For environment perception, an arm-mounted RGB camera observes the
shelf, and ArUco markers provide product identifiers. Homography estimation
reconstructs the shelf plane regardless of camera pose, enabling grid discretiza-
tion. Each detected product is mapped to the nearest cell to form a structured
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Fig. 3. Execution results of the proposed system

array representation of the shelf state, which is embedded into a dynamically
generated prompt for the foundation model.

For planning, the system uses OpenAl’ s ol-mini foundation model, which
receives static task rules and the updated shelf state. It generates high-level
actions—such as removing expired items and placing new products—that are
parsed into executable robot commands. After each step, the robot re-observes
the shelf and updates the prompt, forming an adaptive, feedback-driven loop.

Simulated and real-robot experiments show that the system produces near-
optimal action sequences, maintains robustness under varying success rates, and
can perform complete shelf display and disposal operations. Remaining chal-
lenges are mainly due to perception errors. Overall, the results demonstrate that
foundation-model-driven planning offers a flexible and scalable alternative to
conventional rule-based methods for real convenience-store environments.

4.3 Development of a robot hand with four primitive motions for
efficient assembly of various ingredients in Bento boxes

In recent years, numerous robotic hands have been developed for food-handling
applications. Nevertheless, arranging a wide variety of ingredients within a Bento
lunch box remains a significant challenge due to the limited dexterity and sub-
stantial finger thickness of conventional grippers. Robot hands designed for
general-purpose food manipulation often lack the precision and versatility re-
quired for the detailed assembly tasks involved in Bento preparation.

To address this limitation, we developed a novel robotic hand that incor-
porates an additional linear-motion degree of freedom into a standard two-jaw
gripper as shown in Fig. 4[2]. This mechanism enables the execution of four fun-
damental manipulation primitives—grasping, releasing, pulling, and sliding off—
which we identify as essential for the effective arrangement of Bento ingredients.
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Fig. 4. Developed robotic hand for Bento box assembly

We conducted a series of systematic experiments using a single-arm robotic
platform equipped with a vision system based on the Segment Anything Model.
The experimental results demonstrate that the proposed hand successfully per-
forms all four primitive motions, thereby overcoming the operational constraints
of conventional grippers. Notably, the pulling motion enabled reliable manipula-
tion of thin food items that are difficult to handle through grasping alone. Fur-
thermore, the proposed hand successfully arranged all ingredients in the Bento
box used in our study, indicating its strong potential for practical deployment
in Bento assembly tasks.

4.4 The Fluorescent AR Marker

We developed a 6DoF pose estimation network using a dataset automatically
annotated with our Fluorescent Augmented Reality (AR) Marker [4], as shown
in Fig. 5. The marker consists of a transparent film coated with fluorescent
paint that becomes visible under ultraviolet (UV) illumination while remaining
invisible under normal lighting. By alternating visible and UV light, the system
automatically generates RGB images, segmentation masks, and ground-truth
6DoF pose information, enabling efficient creation of large-scale datasets that
are difficult to obtain with conventional methods.

Using this dataset, we trained a 6DoF pose estimation network that learns
object poses with the marker but can estimate them without the marker during
inference. The average positional error is 7.2 mm, comparable to traditional AR
marker—based systems. This method significantly reduces the cost and effort of
collecting high-quality pose data and provides a practical solution for manipu-
lation tasks. Future work will extend the approach to transparent and reflective
objects, which remain challenging for existing 6DoF pose estimation techniques.



Fig. 5. Fluorescent AR Marker: The left image is captured without UV illumi-
nation, the center image with UV illumination, and the right image represents
the difference between them

5 Conclusion

This paper presented the Happy Robot team’s key developments for RoboCup@Home
2026. Our open-hardware platform, Happy Edu, provides an accessible solution

for new teams, while our integrated perception system supports robust multi-
modal understanding. Research contributions include:

— a robust and cost-efficient 3D LiDAR-based human-following system

a foundation-model-driven planning method for shelf operations

— a robot hand with four primitive motions for Bento assembly

an automatic 6DoF annotation and estimation method using a Fluorescent
AR Marker

Together, these contributions demonstrate practical effectiveness and potential
for further advancement. Future work will focus on improving perception accu-
racy, manipulation ability, and performance on transparent or reflective objects.
In addition, we are working on fine-tuning the robot foundation model g 5 using
LoRA on the HSR robot for RoboCup tasks.
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Annex

Happy Edu Description

Fig. 6. Happy Edu

— Happy Edu is an open-hardware robot developed by the Demura Laboratory,
as shown in Fig.6.
— Hardware descripton

Height: 0.9 [m], Width: 0.4 [m], Length: 0.4 [m], Weight 18:[kg]

Base: Kachaka, Differential pair. Max velocity is 0.8 [m/s].
Manipulators: Current, an arm is 4 DoF and a hand is a DoF. Payload
is 0.5 [kg]. This manipulator is not sufficient for RoboCup@Home task,
so 6 DoF arm is devlopping.

Torsos: A carbon pipe. A motorized cane will be used for the lifting
mechanism

Heads: Equipped with an LCD display, an RGB-D camera, and a fisheye
camera, and includes a tilt mechanism.

LiDAR: Current Hokuyo UTM 30 LX. 3D LiDAR, Livox Mid-360, will
be used.

RGB-D camera: RealSense D435i

Fisheye camera: ELP 180 [°] USB camera

Microphones:RODE VideoMic Go

Display: 10.1 inch IPS LCD display
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Computer: Dell Alienware R16 (GPU: Nvidia RTX 4090 Mobile)

— Software description

Automated speech recognition: Whisper

TTS: Mimic3

Manipulation: ROS2 MovelT2

Natural Language Processing: ChatGPT API

Navigation, localization, and mapping: ROS2 Nav2

Object recognition: Detic

Object segmentation: SAM

People recognition: Grounding Dino

People tracking: Self-developing based on Reid3D and Pointpillars
Pose/Gesture recognition: Media Pipe



