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Abstract

The purpose of this paper is to solve a significant problem faced by waypoint-based robot nav-

igation: the positions of the waypoints can be located in unreachable areas due to errors in self-

localization, the map, or in the waypoint data.

Much research has focused on self-localization, but few studies have focused on estimating way-

points. The method presented in this paper estimates waypoints and self-positions using information

from LIDAR (Light Detection and Ranging) processed using particle filters. If waypoints are placed

in unreachable areas, the weights of the particles around the waypoint are decreased according to

a geometric constraint, and the weights of other particles in reachable areas are increased. Be-

cause the waypoint is the expectation value of all particles, this process relocates the waypoint at

a reachable location. Another characteristic of this method is the mutual feedback between the

probability density functions (PDFs) of the waypoint and the self-position. This method first alters

the PDFs of the self-positions using the PDFs of the waypoints, and then changes the PDFs of the

waypoints using the PDFs of the self-positions, thus implementing mutual feedback and improving

the accuracy of self-localization and the robustness of the waypoint navigation.

This method was used for a trial run of the Tsukuba Challenge 2010, and a 240 [m] run was

successfully finished using only dead reckoning information. Other experiments show that this

simple, unique method is very useful in waypoint-based robot navigation.

keywords: waypoint-based navigation, waypoint estimation, self-localization, mutual feedback, The

Tsukuba Challenge

1 INTRODUCTION

Waypoint-based navigation is widely used for autonomous robot, human, vehicular, vessel and aircraft

navigation because of its simplicity and compact representation [1, 2, 4]. The navigation scheme se-
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quentially follows sets of ordered coordinates called waypoints.

The main problem of this navigation method is that errors in self-localization, inaccurate maps, or

errors in waypoint placement can move waypoints to real-world locations that robots cannot navigate

into, e.g., ponds, walls or hedges. This behavior becomes increasingly problematic as self-localization

errors increase. In the Tsukuba Challenge [5], an open experiment of autonomous robot navigation

through the pedestrian streets of Tsukuba, many robots failed because of this problem.

Thus, the purpose of this study is to solve this drawback of waypoint-based navigation by simultane-

ously estimating self-positions and waypoints using a particle filter. The motivation for this study is that

our team, the demura.net team, retired during the Tsukuba Challenge 2009 because of this problem.

In the Tsukuba Challenge 2010, our proposed method was used in the qualifying run, and successfully

finished a 240 [m] run using only dead-reckoning information for the navigation (Figure 1).

This paper is organized as followings. Section 2 describes the related research. Section 3 introduces

the proposed method. Some experimental results are presented in Section 4. Finally, Section 5 provides

concluding remarks.

———– Insert Figure 1 —————-

2 RELATED RESEARCHES

Numerous studies on waypoint-based navigation have been presented[1, 2, 4, 12, 13]. The subgoal

method represents one of related method of solving the problem of waypoint-based navigation. Krogh,

Thorpe, and Feng proposed subgoal-based method that interpolates between preselected subgoals and

dynamically avoids obstacles using data from a range finder [6, 7]. Barraquand et al. proposed a path

planning technique using a sophisticated artificial potential field [8] , but this technique is difficult to

use for real-time navigation. To solve this problem, Lagoudakis et al. have proposed a potential field

method that sequentially uses an artificial neural network [9] . Maida et al. extended this method to
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automatically generate local waypoints or subgoals [2] .

Lavalle proposed rapidly-exploring random trees (RRTs) that can address the problem of real-time

path planning [10]. Bruce and Veloso developed a path planner based on RRTs. Their work improved

the efficiency of replanning and the quality of the generated paths, and they successfully applied this

method to the navigation of real robots [11]. Saunders et al. applied RRTs to miniature air vehicles.

The method generates waypoint paths around known obstacles using RRTs and generates paths around

detected obstacles using a dynamic geometric algorithm [12].

Furthermore, Wang et al. proposed a waypoint-based navigation method that combines reactive and

deliberative exploration. The reactive exploration scheme generates waypoints using an incremental

decision tree. This method is able to navigate unknown, changing, and time-constrained environments

[13].

Most of these studies consider methods of navigating between known waypoints or generating new

waypoints between already known waypoints. However, little work has focused on estimating the known

waypoints, including the goal point.

In the Tsukuba Challenge, Eguchi and Mizutani proposed a sub-waypoint method [14]. This ap-

proach aims to facilitate continuous navigation and obstacle avoidance. When self-localization errors

increase, the estimated waypoint positions can be located in unreachable areas. For this reason, sub-

waypoints, which are dynamic target points, are set at reachable points along the course in the following

two ways:

1. Regions between lined landmarks: sub-waypoints are set in line with lined landmarks.

2. Regions between the two sides of the course, which is surrounded by obstacles such as promenades

or corridors: sub-waypoints are set in the middle of the course.

The sub-waypoint method is limited to the above two cases. Thus, its versatility is problem because
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the method cannot set sub-waypoints in other cases. Furthermore, the technique does not correct for

errors in waypoint estimation, it only interpolates sub-waypoints between known waypoints to avoid

obstacles.

Our proposed method is quite different from previous studies in that it estimates waypoint positions

in reachable areas using external sensors such as LIDAR sensors. Furthermore, the shifts in the waypoints

are assumed to be due solely to self-localization errors, and the method improves the estimation accuracy

by implementing mutual feedback between the PDFs of the waypoints and the self-positions. Therefore,

the problem of waypoint-based navigation is resolved.

3 MUTUAL FEEDBACK

3.1 Outline

The proposed method comprises the following 3 steps:

STEP 1: Self-localization based on a particle filter

STEP 2: Waypoints estimation based on a particle filter

STEP 3: Mutual feedback between self-positions and waypoints. Return to Step 1.

STEP 1 uses a conventional particle filter as described in references [15, 16]. External sensors used to

estimate the self-position may be either LIDARs or GPSs. In the Tsukuba Challenge, we used LIDARs

for external sensors because the course includes sections in which robots cannot receive GPS signals.

STEP 2 also uses a conventional particle filter. However, the waypoint motion model is discrete in

contrast to the model of the robot’s self-positions. The measurement model of STEP 2 is also different

from that of STEP 1. Because waypoints are usually set to points where there are no physical entities,

it is not easy to estimate waypoints. We devised a method that will be described in detail in Section

2.2.
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STEP 3 assumes that there are no errors in the map or waypoint data, and all errors thus arise

in self-localization. Therefore, the shifts in waypoint positions are due to self-localization errors. In

the proposed method, the waypoint positions and self-positions are represented by probability density

functions (PDFs). The shapes of the two PDFs are basically the same because the waypoint estimation

errors are determined by the self-localization errors. However, constraints on the physical locations of

waypoints, e.g., waypoints must be 3 [m] away from a wall or in the middle of an aisle, can constrain

the PDFs of the waypoints. The reduced PDFs are fed back to the PDFs of the self-positions, and thus

the self-position PDFs are also reduced. In the same way, the self-position PDFs are then fed back to

the waypoint PDFs. This iterative computation can improve the accuracy the positions of the robot

and the waypoints.

Obstacle avoidance and navigation are based on an artificial potential field (APF) method. In this

method, waypoints exert attractive forces, while obstacles exert repulsive forces. Robots navigate to the

waypoints and avoid obstacles. This method is simple and effective, but exhibits one major problem. If

a local minimum exists, then robots can become trapped in this minimum and are then unable to reach

waypoints. Waypoint estimation errors are one of the causes of this problem.

The proposed method can reduce the errors in waypoint and self-position estimation and can thus

partially solve the major drawback of waypoint-based navigation.

3.2 Waypoint Estimation Using Particle Filter

3.2.1 Outline

This section describes the waypoint estimation method using the particle filter. The particle filter

method is well-known and widely used for self-localization. The framework of the particle filter is

the same as that of conventional filters [16]. However, the motion models and measurement models

are quite different from those conventional filters. The particle filter represents the positions of the

robot and the waypoints using a set of particles, which represent candidate positions. The i-th particle
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1
y) is the first waypoint, rand(0, σ2) is a zero-mean random number with variance

σ2 and N is the total number of particles.

STEP 2: Sampling

Update the position (x
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(i)
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The motion model of the waypoint is represented by the following equation. The waypoint does
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model described in detail in Section 3.2.2.
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STEP 4: Localization and resampling

The position (xt, yt) of the waypoint is the expected value of all particles as shown in the Equations

(7) and (8).

xt =
N∑
i=1

w
(i)
t x

(i)
t (7)

yt =
N∑
i=1

w
(i)
t y

(i)
t (8)

In the resampling, low-variance sampling is used to reduce the sampling error [16]. New particles

are randomly placed using a uniform distribution around the center of the estimated waypoint

position (xs
t , y

s
t ) using Equations (9) and (10) . Return to STEP 2.

x
(j)
t = xs

t + rand(0, σx
2) (9)

y
(j)
t = yst + rand(0, σy

2) (10)

3.2.2 Measurement model

In many cases, waypoints do not correspond to physical entities so that robots can pass through the

waypoints. Therefore, measurement models must be devised.

This method assumes that waypoints are near physical obstacles such as walls, buildings, or trees.

In this paper，a waypoint WPi is set d
i = {d(i)x , d

(i)
y }[m] away from obstacles.

During the course of robot navigation, self-localization errors can move waypoints inside the obsta-

cles. LIDAR is used to examine the relationship between the waypoint and the position of the obstacles.

If the waypoint is inside an obstacle as shown in Figure 2, then the PDFs of the waypoints are changed

using the following procedure. The geometric constraints are often set by the presence of entities such

as hedges, fences, or walls.
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(1) Obtain the point clouds of the obstacles using LIDAR. Extract the two points (Obstacle 1,

Obstacle 2) nearest the waypoint from the point clouds. The Obstacle 1 and Obstacle 2 are the closest

points to the waypoint in the point clouds.

(2) Determine the line la that passes through the two points and the line lb that passes through the

waypoints and is perpendicular to the line la.

(3) Determine the intersection q(xq, yq) between the lines la and lb. The estimation point D(xs
t , y

s
t )

is set at a pre-defined correction distance d[m] from the intersection.

———– Insert Figure 2 —————–

———— Insert Figure 3 —————-

The measurement model is a normal distribution f(x, y;µx, µy, σ
2
x, σ

2
y, ρ) , which is defined as follows.

p(xE , yE |x(i)
t , y

(i)
t ) = f(x

(i)
t , y

(i)
t ;xs

t , y
s
t , σ

2
x, σ

2
y, ρ) (11)

where (µx, µy) are the expected values，(σ2
x, σ

2
y) are variances，and ρ is the correlation coefficient.

The weight ω
(i)
t of each particle s

(i)
t is obtained using Equation (6) in this measurement model.

This procedure is easy to apply to other geometric constraints, as shown in Figure 3. The estimation

point is dx away from line la and dy away from line lc. The other procedures are the same.

3.3 Mutual Feedback

The estimation accuracy of the self-positions and waypoints is improved by mutual feedback between

the PDFs of the estimated self-position and waypoint positions.

Dead reckoning errors grow as the robot moves, and errors in the PDFs of the waypoint positions

similarly increases, as shown in Figure 5. However, the centers of the PDFs do not changed significantly.

The authors rewrote the section 3.2.2 Measurement model. The explanation of Figure 2 and Figure 3

are added in the section. When the self-localization errors grow too large, waypoints can move into
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the interiors of obstacles. In this case, the relative positions of the obstacles and the waypoints can

be determined using sensors, such as LIDAR sensors. This information constrains the PDFs of the

waypoints because the waypoints cannot exist inside of the obstacles. That is, the PDF of the estimated

waypoint is equal to the joint distribution of the newly estimated PDF A of the waypoint and the initial

PDF B of the waypoint, as shown in Equation (12) and Figure 4. The PDF of the self-position is

updated in the same way.

f(x, y;µx, µy, σ
2
x, σ

2
y, ρ) = f(x, y;xw, yw, σ

2
x, σ

2
y, ρ)× f(x, y;xE , yE , σ

2
x′ , σ2

y′ , ρ′) (12)

————– Insert Figure 4 —————

————– Insert Figure 5 —————-

Figure 6 illustrates the entire algorithm described above. The process after sampling is different

from that of the conventional particle filter. In this process, PDFs are calculated using information

from sensors, the estimated PDFs of the self-position and the waypoint positions exert mutual feedback

on each other. The subsequent processes are the same as those implemented in other particle filters.

———— Insert Figure 6 —————–

4 EXPERIMENTS AND DISCUSSION

4.1 Outline

Experiments were conducted in the FMT (Future Machine Technology Lab.) building at Kanazawa

Institute of Technology to validate of the proposed method of mutual feedback. We applied this method

to navigation and examined the estimation errors. The experiment was performed 10 times using mutual

feedback (Feedback ON) and 10 times with mutual feedback disabled (Feedback OFF) . Figure 7 shows

the course schematic and the waypoints, and Table 1 presents each waypoint’s coordinates (x[m], y[m])

and distance (z[m]).
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——— Insert Figure 7 ———-

——— Insert Table 1 ———-

We used the robot shown in Figure 1, Kensei-Chan 3, which was developed based on an electric

wheel chair in our laboratory. Table 2 presents the specifications of the robot. In these experiments,

a map coordinate system was adopted for navigation. The robot’s starting point was set to the origin

O(0, 0)[m], as shown in Figure 7. The correction distance d was set to 1.0 [m], and the current waypoint

was switched to the next waypoint professional English editing service if a robot came within 0.25 [m]

of the current waypoint.

——– Insert Table 2 —————–

4.2 Experimental Results

In 10 trials with mutual feedback enabled (Feedback ON), the robot successfully finished the course 10

times. On the other hand, in the 10 experiments without mutual feedback, the robot succeeded 7 times

and failed 3 times.

Table 3 shows the mean deviation of the self-position (µ) from to the true value and the standard

deviations (σ) of this error. The mutual feedback method improved the accuracy of the self-localization.

The mean error improved from 1.57 [m] to 1.20 [m], and the standard deviation of the error improved

from 0.86 [m] to 0.62 [m]. Table 4 shows the waypoint estimation results. The mutual feedback method

also improved the accuracy of the waypoint estimation. The mean error improved from 1.49 [m] to 1.26

[m], and the standard deviation of the error improved from 0.76 [m] to 0.63 [m].

Figure 8 clearly demonstrates that the estimation errors increase as the robot moves with Feedback

OFF, whereas the errors do not increase over time with Feedback ON. The position estimation errors

are relative large in both cases because positions were estimated using only dead-reckoning.

The proposed method of mutual feedback is effective when the self-position estimation errors are

large. If the self-position estimation errors are small, the waypoints do not move into unreachable areas,
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and the proposed method does not affect the results.

The results of these experiments and others indicate that the proposed method is useful. Further-

more, we applied this method to waypoint-based navigation and participated in the Tsukuba Challenge

2010. Our team successfully finished a 240 [m] run using only dead reckoning and mutual feedback.

——— Insert Figure 8 —————–

——— Insert Table 3 ———————

———— Insert Table 4 ————————-

4.3 Discussion

The proposed method of waypoint estimation using mutual feedback solves the most significant draw-

back of waypoint-based navigation. Waypoint-based navigation based on the map matching approach

sometimes fails because errors in self-position estimation cause the positions of waypoints to move into

unreachable. The proposed method can relocate waypoints into reachable areas using the distances

around sensed obstacles.

The proposed method presents a number of advantages compared to map matching. The method

does not require precise global maps, which are often pregenerated using LIDAR, and the algorithm is

simple and easy to implement.

The disadvantage of the proposed method is that the performance depends on the shape of the

surrounding environment. The waypoint estimation technique should be modified to address more

complicated environment because currently, the method performs better when the waypoints are set

near straight lines or right-angled corners as shown in Figures 2 and 3.

In this paper, the waypoint estimation method is only considered in the presence of static obstacles.

The method is difficult to simply apply in an environment that contains dynamic obstacles such as

pedestrians and vehicles. To solve this problem, dynamic obstacles and static obstacles should be

distinguish, and this method should only be applied to the static obstacles. Discrimination between
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static obstacles and dynamic obstacles is not difficult, but, the authors have not implemented it yet.

The topic of dynamic obstacles should be treated in future work.

5 CONCLUSIONS

In this paper, to solve the major problem faced by waypoint-based navigation, we proposed a method

of simultaneous estimation of self-positions and waypoint positions using the particle filters.

The waypoint errors were caused by errors in self-position estimation. Waypoint errors, represented

as PDFs of the waypoint positions, can be decreased using physical constraints sensed through LIDAR.

The improved PDFs are then fed back to the PDFs of the self-positions, which constrains the self-position

PDFs. In the same way, the constrained self-position PDFs are fed back to the waypoint position PDFs.

This iterative computation improves the accuracy of both the self-positions and waypoint positions.

In the Tsukuba Challenge 2010, this method was used in a trial run in which only dead reckoning

information was used for navigation, and the robot successfully finished a 240 [m] run. Other exper-

imental runs demonstrate that this unique method is both simple to implement and useful in robot

navigation. Our future work will include methods for dealing with dynamic obstacles.
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Figure 1: Kensei-Chan 3 at the Tsukuba Challenge 2010
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Figure 2: Estimation using geometric constraint 1
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Figure 3: Estimation using geometric constraint 2
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Figure 4: Joint PDFs of waypoints
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Figure 5: Mutual feedback
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Figure 6: The algorithm of the proposed method
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Figure 7: The experiment course
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Figure 8: Localization Errors
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Table 1: Waypoints

No x[m] ｙ [m] z[m]

1 0.00　 7.53 7.53

2 -21.35 7.53 22.64

3 -21.35 11.53 24.26

4 -24.09 11.53 26.71

5 -24.09 19.53 31.01

6 -24.09 34.53 42.10

7 -24.09 59.53 64.22

8 -21.59 59.53 63.32

9 -21.59 62.53 66.15

10 -21.59 67.53 70.90
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Table 2: Specifications of the robot

Robot name Kensei-Chan 3

Size: length × width × height 113 × 64 × 149 [cm]

Weight 75 [ｋｇ]

Max speed 1.1 [m/s]

Platform YAMAHA JW-Active

Laptop Computer Lenovo ThinkPad T410

CPU Intel Core i7 M620

Memory 4GB

OS Linux Ubuntu 10.04

LIDAR HOKUYO UTM-30LX

Fiber Optic Gyro JAE JG-108FD1
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Table 3: Localization Errors

Feedback OFF Feedback ON

Waypoint No. µ [m] σ[m] µ [m] σ[m]

1 0.18 0.14 0.18 0.08

2 0.81 0.46 0.51 0.21

3 0.56 0.37 0.45 0.26

4 1.20 0.49 0.98 0.24

5 1.47 0.65 1.26 0.34

6 2.11 0.98 2.06 0.58

7 2.13 1.30 1.63 0.56

8 2.06 0.59 2.00 0.31

9 1.96 1.36 1.42 0.43

10 3.21 3.27 1.55 0.62

Average 1.57 0.86 1.20 0.62
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Table 4: Waypoint Estimation Errors

Feedback OFF Feedback ON

Waypoint No. µ [m] σ[m] µ [m] σ[m]

1 0.32 0.10 0.30 0.12

2 0.63 0.37 0.45 0.17

3 0.69 0.41 0.52 0.30

4 1.20 0.40 1.05 0.24

5 1.61 0.69 1.32 0.43

6 2.22 1.02 2.22 0.60

7 1.81 0.84 1.55 0.48

8 1.99 0.61 1.96 0.35

9 1.50 0.73 1.40 0.45

10 2.92 2.41 1.79 0.68

Average 1.49 0.76 1.26 0.63
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